Abstract

This present investigation is carried out to study the effect of algal and bacterial inoculum concentrations on the removal of organic pollutants and nutrients from the tannery effluent by the combined symbiotic treatment process. The bacterial and microalgal consortia was developed in laboratory setup and mixed together to perform this study. The Influence of algae and bacteria inoculum concentrations on the removal of pollutants such as Chemical Oxygen Demand (COD) and Total Kjeldahl Nitrogen (TKN) were studied using statistical optimization through Response surface methodology. For the design of experimental set up and optimization, full factorial Central composite design was used. The profiles of pH, Dissolved Oxygen (DO) and nitrate were also monitored and studied. The inoculum concentrations of microalgae and bacteria showed significant effect on Co-culturing on COD, TKN and nitrate removals as major response. The linear effect of bacterial inoculum has positive dominant influence on COD and TKN removal efficiencies. Nitrate utilization by microalgae increases with the increase in microalgal inoculum concentration. The maximum removal efficiencies of COD and TKN with 89.9% and 80.9% were obtained at optimum bacterial and algal inoculum concentrations of 6.7 g/L and 8.0 g/L respectively. These outcomes of this study are immensely favorable for maximizing the COD and nitrogen (nutrients) removal capabilities of microalgae-bacterial consortia in tannery effluent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call