Abstract
Polyaniline was synthesized chemically in an acidic medium in the presence of Ammonium Peroxydisulphate (APS) as an oxidizing agent. PANI(Polyaniline) nanocomposites were prepared in the presence of various amount of carbon nanotube and zinc oxide (from 1 to 5wt%) by solution casting method. The free-standing film of polyaniline and its nanocomposites were obtained by vaporization of solvent content. The composition, morphology and structure of the polymer and the nanocomposites were characterized by Fourier transform infrared spectroscopy FT-IR spectra, scanning electron microscopy (SEM) image and XRD pattern. In addition, thermal stability was studied by TGA analysis, electrical conductivity was measured by four-point probe technique and mechanical properties were studied by tensile strength test. The characteristic FTIR peaks of PANI were found to shift to lower wave number in nanocomposites due to the formation of H-bonding. XRD results revealed that the crystallinity of PANI was more noticeable after addition of nano-ZnO, while the intensity of the peaks increased by the addition of ZnO nanoparticles. Furthermore, TGA results showed that the decomposition of the nanocomposite was less than that of pure polyaniline which confirms the successful fabrication of products. Young's modulus and strength at break point were increased in the case of the nanocomposite, in addition, the electrical conductivity of the PANI/ZnO nanocomposite film was found to be smaller than that of the PANI film while CNTs increase the conductivity of polyaniline.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Progress in Natural Science: Materials International
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.