Abstract

The effect of the carbon nanotube (CNT) volume fraction on the wear properties of hybrid Mg composites was investigated. The hybrid x vol% CNT + 15 vol% SiCsf-reinforced Mg–5Al–2Si alloy (AS52) matrix composites (x=0, 5 and 10 vol%) were fabricated in two steps involving preform fabrication and squeeze infiltration. The wear rate of the hybrid CNT+SiCsf/AS52 Mg metal matrix composites (MMCs) was evaluated using ballon-disk wear testing, and the roughness was measured using confocal laser 3D microscopy. Additionally, the worn surfaces were examined using high-resolution transmission electron microscopy. The adhesive wear and worn surface roughness of the hybrid CNT+SiCsf/AS52 Mg MMCs were reduced with increasing CNT addition. The CNTs hindered pull-out or cracking of the SiCsfs and matrix deformation. The wear resistance of the hybrid CNT+SiCsf/AS52 Mg MMCs was improved by the CNT additions, causing self-lubricant and strengthening effects compared with the single SiCsf/AS52 Mg MMCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call