Abstract

Endometrial cancer, one of the most common gynecological cancers in women. Patients with advanced or recurrent disease have poor long-term outcomes. The current experiment explore the roles of cationic microbubbles (CMBs) carrying paclitaxel (PTX) and CRISPR/Cas9 plasmids on the xenotransplantation model of mice with endometrial cancer. The tumor histology, tumor cell viability, cell cycle, and invasion ability were investigated. Meanwhile, the P27, P21, GSK-3, Bcl-2 associated death promoter (Bad), mammalian target of rapamycin (mTOR), and C-erbB-2 expressions were evaluated by qRT-PCR and western blotting, respectively. CMB-PTX-CRISPR/Cas9 had an inhibitory action on the tumor growth, tumor cell viability, cell cycle, and invasion ability of the mouse xenograft model of endometrial cancer. The CMB-PTX-CRISPR/Cas9 increased the GSK-3, P21, P27, and Bad expression levels, while reduced the C-erbB-2 and mTOR expressions. CMBs loaded with both PTX and CRISPR/Cas9 plasmids may be a new combination treatment with much potential. CMB-PTX-CRISPR/Cas9 may regulate the tumor cell viability, invasion, and metastasis of endometrial cancer naked mouse model by upregulating expressions of GSK-3, P21, P27, and Bad.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call