Abstract

DNA condensation in-vitro has been studied as a model system to reveal common principles underlying gene packaging in biology, and as the critical first step towards the development of non-viral gene delivery vectors. In this study, we use a bio-inspired approach, where small DNA-binding peptides are controllably clustered by an amphiphilic block copolymer scaffold, to reveal the effect of clustered peptide binding on the energetics, size, shape and physical properties of DNA condensation in-vitro. This provides insights into the general architectural effect of gene-binding proteins on DNA condensation process. Moreover, the versatility afforded by regulating the clustering density and composition of peptides may provide a novel design platform for gene delivery applications in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call