Abstract

Stone columns act as vertical drains, and due to their high permeability, allow for the quick dissipation of earthquake induced excess pore water pressure. When water flows through a loose sandy soil, it washes away fine soil particles. The fine sand particles get detached when the hydrodynamic force applied on the soil particles breaks the inter particle bonds between soil grains. These detached soil particles are then migrated by the seepage water. Based on the concentration of the soil particles in the seepage water, these may be captured at the pore constriction of gravels during the flow of water through the stone column. Thus, the clogging of stone column initiates which reduces of the permeability of column. The rate of dissipation of pore water pressure during earthquake is affected due to the clogging of column. In this paper, a mathematical model is proposed to determine the rate of dissipation of pore water pressure of stone column-reinforced ground by considering the clogging effect of column. The result obtained from the proposed model is verified with the available in-situ experimental data. A parametric study is also performed to investigate the effect of different parameters of the proposed model on the clogging of stone column. It is observed that when the permeability ratio, compressibility ratio and area ratio decrease, the possibility of clogging increases. The peak value of the excess pore water pressure ratio can increase up to around 50% due to clogging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call