Abstract

The collagen-induced arthritis model in rats was used to study the effect of disodium clodronate on inflammation and destruction of tarsal, metatarsal, and interphalangeal bones and joints. Female DA rats were immunized with heterologous type II collagen. Fourteen days after immunization, rats with similar scores were assigned to the different experimental groups. They were treated subcutaneously either with saline (controls) or with clodronate at doses of 12.5 and 25 mg/kg/day five times a week for 2 weeks. Clinical signs of arthritis including the severity of paw swelling were assessed weekly. At the time of killing, histological features of the non-decalcified tarsus with tarsal, tarsometatarsal and interphalangeal joints were assessed for inflammatory soft-tissue, articular, and bone changes. All the arthritic control rats developed severe arthritis as shown by the total histological scores of the hindpaw. The treatment with clodronate (25 mg/kg) decreased clinical signs of arthritis, the activity of the collagen-degrading lysosomal enzyme, beta-N-acetylglucosaminidase, in inflamed hindpaw tissue, serum osteocalcin level and serum cross-linked telopeptide of type I collagen level. Histological evaluation indicated moderate arthritis in 29% of the rats and severe arthritis in 71%. The results show that clodronate given therapeutically to arthritic rats, induced with type II collagen, suppresses the intensity of inflammation and bone lesions in the tibiotarsal and tarsometatarsal regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.