Abstract

This paper focuses on the experimental investigation of the time-averaged and time-resolved pressure field of a second stator tested in a one and a half stage high-pressure transonic turbine. The effect of clocking and its influence on the aerodynamic and mechanical behaviour are investigated. The test program includes four different clocking positions, i.e. relative pitch-wise positions between the first and the second stator. Pneumatic probes located upstream and downstream of the second stator provide the time-averaged component of the pressure field. For the second stator airfoil, both time-averaged and time-resolved surface static pressure fields are measured at 15, 50 and 85% span with fast response pressure transducers. Regarding the time-averaged results, the effect of clocking is mostly observed in the leading edge region of the second stator, the largest effects being observed at 15% span. The surface static pressure distribution is changed locally, which is likely to affect the overall performance of the airfoil. The phase-locked averaging technique allows to process the time-resolved component of the data. The pressure fluctuations are attributed to the passage of pressure gradients linked to the traversing of the upstream rotor. The pattern of these fluctuations changes noticeably as a function of clocking. Finally, the time-resolved pressure distribution is integrated along the second stator surface to determine the unsteady forces applied on the vane. The magnitude of the unsteady force is very dependent on the clocking position.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call