Abstract

Surface water (SW) quality is particularly vulnerable to increased concentrations of nutrients, and this issue may be exacerbated by climate change. Knowledge of the effects of temperature and rainfall on SW quality is required to take the necessary measures to achieve good SW status in the future. To address this, the aims of this study were threefold: (1) to assess how a changing climate may alter the nitrate, ammonium, phosphorus and biological oxygen demand status (BOD5) of SW; (2) assess the relationship between water quality and flow; and (3) simulate diffuse and point source pollution reduction scenarios in the Júcar River Basin District in the Mediterranean region. A regionalised long-term climate scenario was used following one Representative Concentration Pathway (RCP8.5) with the data incorporated into the coupling of hydrological and water quality models. According to these climate change scenarios, SW with poor nitrate, ammonium, phosphorus and BOD5 status are expected to increase in the future by factors of 1.3, 1.9, 4 and 4, respectively. Furthermore, median ammonium and phosphorus concentration may be doubled in months with low flows. Additional measures are required to maintain current status in the water bodies, and it is necessary to reduce at least 25% of diffuse nitrate pollution, and 50% of point loads of ammonium, phosphorus, and BOD5.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call