Abstract

The decrease of the habitat is one of the main factors that affect the survival of G. flavomarginatus. This study assesses the halophytic grasslands loss over a period of 30 years in the distribution area of the Bolson tortoise and the effects of climate change on the habitat suitability of these grasslands and its possible impact on this tortoise. Grassland loss was assessed by an analysis of symmetric differences and the habitat suitability model was carried out by the method of overlapping layers raster. Our results showed a grassland loss of 63.7%; however, our current habitat suitability model points out that much of the grassland loss has occurred where the environmental conditions are suitable. These results suggest that anthropic activity is a main factor in the habitat disturbance in the study area. Likewise, the models for years 2050 and 2070 under the criteria RCP 2.6, RCP 4.5, RCP 6.0, suggest that anthropic activity will continue be the main cause of the grassland loss. Therefore, considering the association between the Bolson tortoise and grassland halophyte Hilaria mutica, which comprises around 60% of its diet, the viability of the Bolson tortoise depends largely on strategies aimed at protecting the soil that allow the presence of this grassland.

Highlights

  • Climate influences plant and animal distributions due to their requirements related to temperature and humidity (Parmesan and Yohe 2003; Root et al 2005; Walther et al 2005; Lavergne et al 2006)

  • The current model habitat suitability identifies the greatest part of the localities where halophytic grasslands had been reported in the Chihuahuan Desert (CONABIO 2015) (Table 1, Figure 3); the projected habitat suitability for Chihuahuan Desert shows that habitat suitability loss was relatively low for the scenarios Representative Concentration Pathways (RCP) 6.0, RCP 4.5, and RCP 6.0 for the years 2050 and 2070 (Table 2, Figure 3)

  • Considering the scenario RCP 8.5 for year 2050, halophytic grasslands only it remains in B zone; while for year 2070 disappear completely the habitat suitability in the current distribution area of the Bolson tortoise (Table 2, Figure 3)

Read more

Summary

Introduction

Climate influences plant and animal distributions due to their requirements related to temperature and humidity (Parmesan and Yohe 2003; Root et al 2005; Walther et al 2005; Lavergne et al 2006). Thereon, it has been mentioned that facing loss of vegetation of the arid zone, the presence and animal behavior that feed on desert plants could be modified, generating a decrease in the distribution area and in size of their populations (Gandiwa and Zisadza 2010). Species’ response to environmental change will be determined by their physiology (climatic tolerance), morphology (i.e., body size), ecology (feeding habits, habitat selection; nesting sites), dispersal capacity and behavioral characteristics (foraging time, general activity). There are species with negative responses by decreasing its abundance and/or its distribution, as well local extinction (Midgley et al 2007), and other species with positive responses reflected in increasing their abundance and expanding their distribution (Stotz et al 1996; Thomas et al 2004; Moritz et al 2008; Lara et al 2012)

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.