Abstract

Abstract For species that have a fossorial habit or that spend most of their time under leaf litter, correlative models may not be sufficient to model their potential risk in the face of climate change; this is the case for the species examined here. In the present study, we compared three different models (maximum entropy correlative models, mechanistic models based on species thermal tolerance, and habitat cover) applied to three lizards of the genus Scincella (S. gemmingeri, S. lateralis and S. silvicola). Models were proposed for current climate scenario, and for 2050 at three SSPs greenhouse gas concentrations, assessing sites with suitable climate and habitat cover, optimum temperature for species survival, and to selecting the best predictive model. Current and future correlative models indicate areas with little climatic suitability within the thermal range that these lizards can tolerate; however, it was possible to corroborate the presence of populations of S. gemmingeri and S. silvicola in areas that do not have climatic suitability, but do have habitat coverage. These results support the hypothesis that the habitat and microhabitat structures protect these species against possible adverse climatic conditions. It may be that it is also necessary to measure physiological variables (to obtain the thermal range of each species), as well to include both habitat type and habitat structure in spatial analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.