Abstract

A two-dimensional mathematical model of a Proton Exchange Membrane fuel cell stack is developed. Taking advantage of the geometrical periodicity within the stack, the model is used to predict the detailed thermal, humidity, and electrochemical behavior of the fuel cell. Using recently-reported experimental results, the electrical and thermal contact resistances that develop within the stack, in response to the compressive force used to assemble the stack, are accounted for. The fuel cell performance, reported in terms of its power output and internal temperature distributions, is predicted to be very sensitive to the compressive load applied to the stack.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call