Abstract
The objective was to assess the effect of a new, highly selective beta 3-adrenergic agonist, CL-316,243 (CL) (J. D. Bloom, M. D. Dutia, B. D. Johnson, A. Wissner, M. G. Burns, E. E. Largis, J. A. Dolan, and T. H. Claus., J. Med. Chem. 35: 3081, 1992), on energy balance and brown and white adipose tissues (BAT and WAT, respectively) in young rats eating a high-fat diet to induce obesity. Chronic treatment with CL increased body temperature and 24-h energy expenditure, mainly by increasing resting metabolic rate. Food intake was not altered but carcass fat was reduced. Interscapular BAT was markedly hypertrophied, with three- to fourfold increases in the content of uncoupling protein (UCP) and cytochrome oxidase. Quantitative immunoelectron microscopy of interscapular BAT of CL-treated rats showed smaller mitochondria with an unchanged total amount of UCP per mitochondrion. The relative frequency of the four major cell types in BAT (mature brown adipocytes, preadipocytes, interstitial cells, endothelial cells) was not altered. The CL-induced hypertrophy differed from that induced by chronic stimulation by endogenous norepinephrine (as in cold-adaptation) in absence of hyperplasia (there was a slightly reduced DNA content), absence of an increase in the thyroxine (T4) 5'-deiodinase activity, and absence of a selective increase in UCP concentration. WAT depots weighed less and had fewer cells (lower DNA content) in the CL-treated rats. Some multilocular adipocytes appeared in these normally almost exclusively unilocular WAT depots (mesenteric, inguinal, epididymal, retroperitoneal). We conclude that CL not only promotes BAT mitochondrial proliferation and thermogenesis and overall energy expenditure and leanness, but also retards the development of WAT hyperplasia during the early stage of diet-induced obesity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.