Abstract

Preparing small, highly dispersed Ni2P particles is important for improving the hydrogenation ability of Ni2P. Here, Ni2P nanoparticles (approximately 4.3nm) on mesoporous zeolite ZSM-5 (Ni2P/MZSM-5-CA) were prepared using citric acid (CA) as an assistant agent. The formation mechanism of small Ni2P particles when CA was added was investigated by combining UV–vis diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, and temperature-programmed reduction with a transmission electron microscope and CO chemisorption. The results indicated that the formed CA–Ni complex with high viscosity favors the Ni precursor dispersed on the dried catalyst. After calcination, the released Ni species strongly interacted with surface acidic hydroxyl groups on MZSM-5, leading to the formation of Ni2P particles with small sizes and good dispersion under a reducing atmosphere. The reaction rate constants and TOFs over Ni2P/MZSM-5-CA (16.2×10−2μmolg−1s−1 and 9.7×10−4s−1) are much higher than over Ni2P/MZSM-5 (8.2×10−2μmolg−1s−1 and 8.3×10−4s−1) in 4,6-dimethyldibenzothiophene hydrodesulfurization. In addition, Ni2P/MZSM-5-CA catalyst shows higher activity than Ni2P catalyst without CA in phenanthrene hydrogenation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.