Abstract
In this paper, the single-stage compressor with circumferential non-uniform tip clearance is experimentally investigated under 180° total pressure distortion for the compressor characteristics and the dynamic stall process. In the special structure of the circumferential non-uniform tip clearance, different circumferential distortion areas are adopted to actively induce the stall. The maximum or minimum flow coefficient near the stall point occurs when the location where the rotor departs the distortion area is at the average tip clearance rather than the maximum or minimum tip clearance. Based on the time-frequency analysis regarding the dynamic stall process at different correspondences between the inlet distortion and the tip clearance, it is found that the rotating frequency of the stall cell that is independent of the location of the distortion area is slightly less than 50% rotor rotating frequency and the large-scale stall inception whose frequency is 4–8 times the rotor rotating frequency occurs. Besides the circumferential phase difference from 90° to 180° between the location where the disturbance occurs and the location where the rotor departs, the distortion area exists. According to the dynamic stall process, the stall interpretation model of circumferential total pressure distortion under the circumferential non-uniform tip clearance is established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.