Abstract

Quorum sensing (QS) is a system of stimuli and responses in bacterial cells governed by their population density, through which they regulate genes that control virulence factors and biofilm formation. Despite considerable research on QS and the discovery of new antibiotics, QS-controlled biofilm formation by microorganisms in clinical settings has remained a problem because of nascent drug resistance, which requires screening of diverse compounds for anti-QS activities. Cinnamon is a dietary phytochemical that is traditionally used to remedy digestive problems and assorted contagions, which suggests that cinnamon might contain chemicals that can hinder the QS process. To test this hypothesis, the anti-QS activity of cinnamon oil against P. aeruginosa was tested, measured by the inhibition of biofilm formation and other QS-associated phenomena, including virulence factors such as pyocyanin, rhamnolipid, protease, alginate production, and swarming activity. To this end, multiple microscopy analyses, including light, scanning electron and confocal microscopy, revealed the ability of cinnamon oil to inhibit P. aeruginosa PAO1 biofilms and their accompanying extracellular polymeric substances. This work is the first to demonstrate that cinnamon oil can influence various QS-based phenomena in P. aeruginosa PAO1, including biofilm formation.

Highlights

  • Quorum sensing (QS) is a communication system through which bacteria converse with one another and higher species [1]

  • The Minimum Inhibitory Concentration (MIC) of cinnamon oil for P. aeruginosa PAO1 was 1 μl/ml, and further experiments were conducted at a sub-lethal concentration

  • Violacein production was qualitatively estimated in the mutant strain C. violaceum CV026 in the presence of increasing concentrations of cinnamon oil

Read more

Summary

Introduction

Quorum sensing (QS) is a communication system through which bacteria converse with one another and higher species [1]. QS is based on the synthesis and perception of specific chemical signals, often referred to as autoinducers, that accumulate in the growth medium during bacterial growth. When the concentration of autoinducers reaches a threshold value, corresponding to a certain population density, it alters the expression of genes. QS positively regulates genes responsible for virulence and biofilm formation [2]. PLOS ONE | DOI:10.1371/journal.pone.0135495 August 11, 2015

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call