Abstract
Cigarette smoke exposure has been associated with a variety of diseases, including emphysema. The current study evaluated the interaction of cell density and cigarette smoke extract (CSE) on fibroblast contraction of collagen gels. Protein levels of transforming growth factor (TGF)-beta1, fibronectin, PGE(2), and TGF-beta1 mRNA were quantified. Although both 5 and 10% CSE inhibited contraction by low-density fibroblasts (1 x 10(5) cell/ml), only 5% CSE augmented contraction in higher-density cultures (3-5 x 10(5) cells/ml). CSE also inhibited fibronectin and TGF-beta1 production in low-density cultures but stimulated fibronectin production in high-density cultures. Active TGF-beta1 was readily detectable only in higher-density cultures and was markedly augmented by 5% CSE. In contrast, although TGF-beta1 mRNA expression was inhibited in high-density cultures by 10% CSE, expression was increased in the presence of 5% CSE. These results suggest that CSE-induced inhibition of low-density fibroblast contraction is due to inhibition of fibronectin production, whereas CSE's stimulatory effect on high-density cells is the result of increased release of TGF-beta1. These effects may help explain the varied pathologies associated with exposure to cigarette smoke.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Lung Cellular and Molecular Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.