Abstract

Changes in the quantity and/or quality of food intake have been shown to be associated with morphological and functional alterations of the gastrointestinal system. To examine this, we investigated the effect of chronic liquid nutrition intake (Fresubin) on stomach and duodenum morphology in Wistar rats fed liquid nutrition during different developmental periods. We used four groups of rats: a) control group (CON) fed pelleted chow for 130days; b) liquid nutrition group (LN) fed liquid nutrition for 130days; c) liquid nutrition juvenile group (LNJ) fed liquid nutrition for 70days and then pelleted food for 60days; d) liquid nutrition adult group (LNA) fed pelleted chow for 70days and then liquid nutrition for 60days. We found that LN and LNA rats showed a significant reduction of empty stomach mass compared to CON animals, while stomach and duodenal longitudinal muscle layer thickness did not differ between groups. Villus height was increased only in LNA animals, while villus width was increased in both LN and LNA rats. Crypt depth was reduced in LNJ. However, liquid nutrition intake did not affect villus height/crypt depth ratio, nor number of goblet cells. We found that chronic intake of liquid nutrition affects some morphological parameters of the stomach and duodenum but these changes were not homogenous between experimental groups. Interestingly, transition from liquid nutrition to solid food reversed the alterations of stomach weight as well as villus width induced by intake of liquid nutrition in LNA rats. Our data indicate that morphological and functional changes in the gastrointestinal system induced by qualitative and quantitative changes in food intake are at least partially reversible. Therefore, specific diets may be used potentially as adjuvant treatment for modulating the progression of gastrointestinal diseases by affecting stomach and small intestine morphology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.