Abstract
Liver lipid peroxidation, nonheme iron, antioxidants, and protein oxidation were investigated in experimental alcohol-induced liver disease in the rat. Wistar male rats were intragastrically and continuously infused for 4 weeks with a high-fat diet plus an ethanol or an isocaloric amount of dextrose, maintaining a high blood alcohol level (200-300 mg%). This model induced fatty liver, spotty necrosis, and focal inflammation. This pathology was associated with an enhanced lipid peroxidation and a decrease in the major antioxidant factors. Hepatic alpha-tocopherol and glutathione concentrations were significantly decreased in ethanol-fed rats. Glutathione peroxidase (GPx) was also decreased, whereas glutathione S-transferase (GST) was unaffected. The nonheme iron level was significantly decreased. Protein oxidation was assessed through three parameters: protein thiols, protein carbonyl groups, and the activity of glutamine synthetase (GS), a centrilobular enzyme particularly susceptible to free-radical-mediated damage. Ethanol-fed rats had decreased protein thiol concentrations and reduced GS activity, together with increased protein carbonyls. A significant correlation between GS activity and the pathological score was observed. This study confirms the ethanol-related increase in lipid peroxidation and shows that ethanol impairs the hepatic antioxidant potential. Furthermore, evidence of oxidative protein damage is given, including decreased activity of a key enzyme of ammonia metabolism. These protein disturbances may contribute to the pathogenesis of the observed liver damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.