Abstract

In humans, chronic ethanol consumption leads to a characteristic set of changes to the metabolism of lipids in the liver that is referred to as an "alcoholic fatty liver (AFL)". In severe cases, these metabolic changes result in the enlargement and fibrillization of the liver and are considered risk factors for cirrhosis and liver cancer. Clock-mutant mice have been shown to display abnormal lipid metabolism and alcohol preferences. To further understand the potential interactions between ethanol consumption, lipid metabolism, and the circadian clock, we investigated the effect of chronic ethanol intake on the lipid metabolism of Clock-mutant mice. We found that ethanol treatment produced a number of changes in the liver of Clock-mutant mice without impacting the wild-type controls. First, we found that 8 weeks of exposure to ethanol in the drinking water increased the weight of the liver in Clock-mutant mice. Ethanol treatment also increased triglyceride content of liver in Clock-mutant and wild-type mice. This increase was larger in the mutant mice. Finally, ethanol treatment altered the expression of a number of genes related to lipid metabolism in the Clock-mutant mice. Interestingly, this treatment did not impact circadian clock gene expression in the liver of either genotype. Thus, ethanol produces a number of changes in the liver of Clock-mutant mice that are not seen in the wild-type mice. These changes are consistent with the possibility that disturbance of circadian rhythmicity associated with the Clock mutation could be a risk factor for the development of an alcoholic fatty liver.

Highlights

  • In humans, chronic ethanol consumption leads to a characteristic set of changes to the metabolism of lipids in the liver that is referred to as an "alcoholic fatty liver" (AFL) [1]

  • Chronic ethanol increased liver weight in Clock-mutant mice Chronic alcohol consumption leads to hypertrophy of the liver in humans [2] and rats [19]

  • Chronic ethanol altered the expression of genes involved in lipid metabolism in Clock-mutant mice In order to investigate the possible mechanisms underlying these effects of ethanol on the lipid content, we investigated the impact of ethanol treatment on 4 genes that are critically involved in lipid metabolism (Fig. 4)

Read more

Summary

Introduction

Chronic ethanol consumption leads to a characteristic set of changes to the metabolism of lipids in the liver that is referred to as an "alcoholic fatty liver" (AFL) [1]. This condition is characterized by an increase in liver weight [2], the accumulation of triglycerides and changes in expression of genes involved in lipid metabolism [3] In severe cases, these changes eventually lead to inflammation [4] and steatohepatitis [5] and are considered risk factors for cirrhosis and liver cancer in humans. Many of the genes responsible for the generation of circadian rhythms have been identified [7]. Many of these genes have been found to be expressed in the liver where the transcription of a number of key genes is regulated on a circadian time scale [8].

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.