Abstract

We have previously shown that chronic treatment with the angiotensin-converting enzyme inhibitor perindopril increased striatal dopamine levels by 2.5-fold in normal Sprague-Dawley rats, possibly via modulation of the striatal opioid or tachykinin levels. In the present study, we investigated if this effect of perindopril persists in an animal model of Parkinson's disease, the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mouse. C57BL/6 mice were treated with the neurotoxin (30 mg/kg/day intraperitoneally) for 4 days and then left for 3 weeks to allow the degeneration of striatal dopaminergic terminals. At this time, the mice exhibited a 40% decrease in striatal dopamine content and an accompanying 46% increase in dopamine D2 receptor levels compared with control untreated mice. The dopamine content returned to control levels, and the increase in dopamine D2 receptor levels was attenuated in mice treated with perindopril (5 mg/kg/day orally for 7 days) 2 weeks after the last dose of MPTP. When the angiotensin-converting enzyme inhibitor was administered (5 mg/kg/day for 7 days) immediately after the cessation of the MPTP treatment, there was no reversal of the effect of the neurotoxin in decreasing striatal dopamine content. Our results demonstrate that perindopril is an effective agent in increasing striatal dopamine content in an animal model of Parkinson's disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.