Abstract

The present study reports differences in phospholipid classes, fatty acids of individual phospholipids, and changes in membrane fluidity and Na +K +-ATPase activity in brain microsomes of rats maintained on an alcohol diet for 35 days compared to sex, age and weight-matched control rats maintained on a calorically-equivalent, non-alcohol diet. Although no difference in Na +K +-ATPase activity was found in microsomes from alcohol vs control rats when measured in the absence of added alcohol, the presence of low concentrations of ethanol (<100mM) stimulated, while high concentrations (>100mM) inhibited enzyme activity. The stimulation was differentially expressed in that the microsomal enzyme from alcohol rats was stimulated to a lesser extent than the enzyme from control rats. However, the inhibiting effect of high concentrations of alcohol was similar in microsomes from both alcohol and control rats. Also in membranes from alcohol rats, there was a lower quantity of phosphatidylethanolamine (PE) and higher quantities of phosphatidylserine (PS) and phosphatidylinositol (PI) compared to membranes from control rats. The major change in fatty acid composition was a reduction in the level of polyunsaturated fatty acids, which was particularly evident in PI and PS. The linoleic acid: arachidonic acid ratio ( 18:2 20:4 ) and the saturation: unsaturation ratio were also increased in PI and PS in membranes from alcohol animals. However, the ratio of n-6/n-3 fatty acids remained the same or was reduced in membranes from alcoholic animals. Although no difference in the inherent “fluidity” of membranes from alcohol vs control rats could be demonstrated by electron paramagnetic resonance, molecular tolerance to ethanol was demonstrated in the membranes from alcohol rats by the resistance to the disordering effects of added ethanol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.