Abstract

Orthorhombic Bi 2Fe 4 − x Cr xO 9 (x = 0.0, 0.25, and 0.75) nanoplatelets were synthesized by a simple hydrothermal method. The structure, morphology, and magnetic properties of the obtained powders have been characterized. Calculation of the lattice parameters of Bi 2Fe 4 − x Cr xO 9, as well as bond lengths and angles, was carried out by X-ray diffraction Rietveld refinement. The volumes of the metal–oxygen tetrahedra and octahedra were calculated to be sequentially increasing as the Cr doping level increases. The samples undergo an antiferromagnetic transition at 250 ± 5 K. The magnetic moments of the samples increase with higher Cr doping level. The 3d electron spin state for Fe 3+ in the as-prepared samples is different, which is possibly due to the distortion of Fe–O tetrahedra and octahedra in the crystal structure after chromium substitution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.