Abstract

Background: Diabetes Mellitus (DM) is an endocrine disorder due to improper secretion of insulin or action of insulin regardless of hyperglycemia in the body. Reactive oxygen species (ROS) play a major role in the development of insulin resistance and DM. Objective: The present study, designed to assess the role of chemically induced ROS and also the effect of chromium picolinate (CrPic) and melatonin (Mel) alone or in combination (CrPic+Mel) along with ROS on insulin resistance, blood glucose, lipid, and oxidative stress variables in alloxan induced Wistar rats. Methods: Male Wistar rats have been categorized into five groups and group consists of six rats. Group I served as untreated, while group II, III, IV, and V, were treated with alloxan (AID), alloxan+CrPic (AID+CrPic), alloxan+Mel (AID+Mel), and alloxan+CrPic+Mel (AID+CrPic+Mel) respectively. Results: Insulin resistance was greatly increased in group AID rats compared with untreated rats. A similar increase was seen in blood glucose, total cholesterol, and triacylglycerols compared between group II and untreated (P<0.05). Significant differences were observed when group group III, group IV, and group V rats were compared with group II rats in blood glucose and lipid variables (P<0.05). But prominent significant differences were observed between group group II and group IV experimental rats in serum levels of zinc, malondialdehyde, nitric oxide, superoxide dismutase, catalase, and glutathione (P<0.05) respectively. Histopathological findings suggest that the Mel and CrPic+Mel treated rats had normal renal tubular architecture compared with group II rats. Relatively normal architecture of liver and pancreas was observed in alloxan rats treated with Mel and CrPic+Mel. Conclusion: CrPic and Mel alone or in a combination prevented pathological alterations in the serum and in tissues due to their anti-hyperglycemic, insulinsensitizing, anti-dyslipidemia, and antioxidant activity, but Mel alone was most effective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.