Abstract

In this article, the effect of chromium on microstructure and properties of high boron white cast iron was studied. The results indicate that the microstructure of high boron white cast iron with different chromium content comprises a dendritic matrix and interdendritic eutectics, and the eutectic compound has a M2B-type chemical formula that does not change with the difference of chromium content. The increase of chromium not only increases the microhardness of boride, but also improves the morphology of boride, which is changed from continuous network to less continuous distribution. Moreover, with the chromium increase, martensite appears in the matrix under the as-cast condition, the appearance of which depends on the increase of chromium in the matrix and the uneven distribution of carbon in the matrix caused by chromium addition. After quenching in air, the matrixes of alloys all change to martensite. However, some secondary particles are found in the central area of the dendrite grains of alloys with higher chromium, and their existence is due to the difference of boron solubility in the matrix with different chromium content. In addition, the hardenability, hardness, and impact toughness are all improved with the increase in chromium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call