Abstract
The archetypical strongly correlated Mott-phenomena compound V2O3 is known to show a paramagnetic metal-insulator transition driven by doping with chromium atoms and/or (negative) pressure. Via charge self-consistent density-functional theory+dynamical mean-field theory calculations we demonstrate that these two routes cannot be understood as equivalent. To this end, the explicit description of Cr-doped V2O3 by means of supercell calculations and the virtual crystal approximation is performed. Already the sole introduction of chromium's additional electron to the system is shown to modify the overall correlated electronic structure substantially. Correlation-induced charge transfers between Cr and the remaining V ions occur and the transition-metal orbital polarization is increased by the electron doping, in close agreement with experimental findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.