Abstract
This paper studies the effect of chromium addition to the Co-MCM-41 catalyst in the synthesis of single wall carbon nanotubes (SWNT). The molecular ratios between the two metals have been varied in the catalyst template and their effect on the synthesized SWNT distribution has been studied. By adding Cr to the Co-MCM-41 monometallic catalyst, the diameter distribution of the synthesized SWNT has shifted towards smaller diameter tubes. This shift was correlated with the development of a bimetallic oxide in the MCM-41 framework during catalyst synthesis. By use of fluorescence spectroscopy, the relative abundance of certain tube chiralities has been seen to increase in the bimetallic samples compared to the monometallic ones as for example the (6,5) nanotube. X-ray absorption analysis of the catalyst before, during and after the SWNT synthesis, suggested that the use of a less reducible oxide (chromium oxide) to anchor clusters of a nanotube growth catalyst (cobalt clusters) is an important general tool for engineering the resultant nanotube properties. The addition of chromium has been seen to affect both the reducibility of the cobalt ions and the size of the resultant particles during the SWNT synthesis process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.