Abstract

Choline and C1 metabolism pathways intersect at the formation of methionine from homocysteine. Hepatic S-adenosylmethionine (AdoMet) concentrations are decreased in animals ingesting diets deficient in choline, and it has been suggested that this occurs because the availability of methionine limits AdoMet synthesis. If the above hypothesis is correct, changes in hepatic AdoMet concentrations should relate in some consistent manner to changes in hepatic methionine concentrations. Rats were fed on a choline-deficient or control diet for 1-42 days. Hepatic choline concentrations in control animals were 105 nmol/g, and decreased to 50% of control after the first 7 days on the choline-deficient diet. Hepatic methionine concentrations decreased by less than 20%, with most of this decrease occurring between days 3 and 7 of choline deficiency. Hepatic AdoMet concentrations decreased by 25% during the first week, and continued to decrease (in total, by over 60%) during each subsequent week during which animals consumed a choline-deficient diet. Hepatic S-adenosylhomocysteine (AdoHcy) concentrations increased by 50% when animals consumed a choline-deficient diet. AdoHcy is formed when AdoMet is utilized as a methyl donor. In summary, choline deficiency can deplete hepatic stores of AdoMet under dietary conditions that only minimally decrease the availability of methionine within liver. Thus decreased availability of methionine may not have been the only mechanism whereby choline deficiency lowers hepatic AdoMet concentrations. We suggest that increased utilization of AdoMet might also have occurred.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call