Abstract

Transient lateral microdomains or lipid rafts play important roles in many physiological membrane-mediated cell processes. Detergent-resistant membranes (DRMs) are good models for the study of lipid rafts. Here we report that DRMs can be obtained by treating human erythrocytes with the nonionic detergents Triton X-100 or octaethylene glycol monododecyl ether (C(12)E(8)) at 37 degrees C, and by treatment at 4 degrees C of cholesterol-depleted erythrocytes. Electron paramagnetic resonance with spin labels inserted at different membrane depths (5- and 16-doxyl stearic acids, 5-SASL and 16-SASL) were used to measure the order parameter (S) of the cell membranes and DRMs. We previously reported significantly higher S values in DRMs with respect to intact erythrocyte membranes. Here we show that higher S values were still measurable in DRMs prepared from intact erythrocytes at 37 degrees C, or from cholesterol-depleted cells at 4 degrees C, for both detergents. For 5-SASL only, increased S values were measured in 4 degrees C DRMs obtained from cholesterol-depleted versus intact erythrocytes. Flotillin-2, a protein marker of lipid rafts, was found in DRMs from intact cells in trace amounts but it was sensitively increased in C(12)E(8) DRMs prepared at 4 degrees C from cholesterol-depleted erythrocytes, while the membrane-skeletal proteins spectrin and actin were excluded from both Triton X-100 and C(12)E(8) DRMs. However, contrary to the 4 degrees C treatment results, flotillin-2 and stomatin were not resistant to Triton X-100 and C(12)E(8) treatment at physiological temperature. The role of cholesterol in DRMs formation is discussed and the results presented provide further support for the use of C(12)E(8) to the study of DRMs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.