Abstract

The application of pesticides in agricultural fields not only reaches the target pests but also with soil where it interacts with soil microorganisms resulting in change of microbial diversity. Chlorpyrifos (CP) is one such organophosphorous insecticide most widely used against various insects, termites, and beetles throughout the globe. In the present work, the effect of CP on soil microbial population was assessed by the cultivable method. The fertile soil which does not have a history of any pesticide application was treated with 100 and 200 µg/g of CP along with control which received only sterile water and incubated for 1, 7, and 14 days. The soil amended with the insecticide showed decrease in the number of colony forming units (CFU) of bacteria and fungi. However, Streptomyces sp. HP-11 which tolerated high concentration and also inhibited fungal population was further selected for biodegradation studies. After 14 days of incubation in Mineral salt media (MSM), the strain HP-11 biotransformed CP into 3, 5, 6-trichloro-2-pyridinol (TCP) and Diethyl Phosphorothioate (DETP), and its formation was confirmed by the m/z peak of LC–MS analysis, which was later metabolized to unknown polar metabolites. The results obtained highlights that the application of chlorpyrifos favored the Actinomycete growth in the soil, thereby inhibiting other microorganisms and the strain HP-11 harbors metabolic pathway for detoxification of CP and its hydrolysis product TCP into polar metabolites, thus suggesting the strain HP-11 will be a potential bioaugmenting agent for the bioremediation of chlorpyrifos contaminated soil and water.Electronic supplementary materialThe online version of this article (doi:10.1007/s13205-016-0462-2) contains supplementary material, which is available to authorized users.

Highlights

  • Pesticides are the synthetic compounds used to protect agricultural crops from disease causing pests

  • The applied pesticide will reach target pests by only 1 % and the remaining will come into contact with soil, where they undergo a variety of transformations that provide a complex pattern of metabolites (Andreu and Pico 2004)

  • The effect of chlorpyrifos on soil microorganisms was analyzed at periodic intervals with soil samples treated with two different concentrations 100 and 200 lg/g of CP and compared with the control sample for the determination of insecticide effect

Read more

Summary

Introduction

Pesticides are the synthetic compounds used to protect agricultural crops from disease causing pests. The applied pesticide will reach target pests by only 1 % and the remaining will come into contact with soil, where they undergo a variety of transformations that provide a complex pattern of metabolites (Andreu and Pico 2004). Fertility of soil is dependent on the soil microbial richness and diversity. Microorganisms enrich the soil nutrients, and improve soil texture and water holding capacity. Researchers have shown that the pesticides are always having their effect on the soil microorganisms. Some pesticides stimulate the growth of soil microorganisms and some have depressive effects or no effects. The relationship of different structures of pesticides on the growth of soil microorganisms is not predictable (Lo 2010)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.