Abstract

A string of monocyanated quinoxaline (Qx)-based D-A-type polymers systematically decorated with electron-attracting chlorine (Cl) atoms was created for use in non-fullerene polymer solar cells (PSCs). First, coupling of the benzodithiophene (BDT) donor and Qx acceptor with the strong electron-attracting cyano (CN) unit at its 5-position yielded the monocyanated reference polymer PB-CNQ. Subsequently, the additional Cl atoms were separately or simultaneously incorporated into the thiophene side groups of the BDT donor and Qx acceptor to create other objective polymers, PBCl-CNQ, PB-CNQCl, and PBCl-CNQCl. The Cl substituents on the BDT donor and Qx acceptor are represented by the names of the polymers. Owing to the favorable contributions of Cl substituents, the inverted-type non-fullerene PSCs based on partially chlorinated PBCl-CNQ (12.80%) and PB-CNQCl (13.93%) exhibited better power conversion efficiencies (PCEs) than the device based on unchlorinated reference PB-CNQ (11.19%). However, a significantly reduced PCE of 9.84% was observed for the device based on PBCl-CNQCl, in which Cl atoms were loaded on both the BDT donor and Qx acceptor at the same time. Hence, these results reveal that optimization of the number and position of Cl substituents in monocyanated Qx-based polymers is essential for enhancing their photovoltaic nature through the synergistic effects between two strong electron-attracting CN and Cl substituents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call