Abstract

In our current investigation, we evaluated the effect of Chlorella pyrenoidosa protein hydrolysate (CPPH) and Chlorella pyrenoidosa protein hydrolysate-calcium chelate (CPPH-Ca) on calcium absorption and gut microbiota composition, as well as their in vivo regulatory mechanism in SD rats fed low-calcium diets. Potent major compounds in CPPH were characterized by HPLC-MS/MS, and the calcium-binding mechanism was investigated through ultraviolet and infrared spectroscopy. Using high-throughput next-generation 16S rRNA gene sequencing, we analyzed the composition of gut microbiota in rats. Our study showed that HCPPH-Ca increased the levels of body weight gain, serum Ca, bone activity, bone mineral density (BMD) and bone mineral content (BMC), while decreased serum alkaline phosphatase (ALP) and inhibited the morphological changes of bone. HCPPH-Ca up-regulated the gene expressions of transient receptor potential cation V5 (TRPV5), TRPV6, calcium-binding protein-D9k (CaBP-D9k) and a calcium pump (plasma membrane Ca-ATPase, PMCA1b). It also improved the abundances of Firmicutes and Lactobacillus. Bifidobacterium and Sutterella were both positively correlated with calcium absorption. Collectively, these findings illustrate the potential of HCPPH-Ca as an effective calcium supplement.

Highlights

  • As one of the most abundant mineral elements in human body, calcium plays a critical role in human bone health, especially for children [1] and the elderly [2]

  • In the that the bone volume compared to the tissue volume (BV/TV), trabecular thickness (Tb.Th), trabecular rats fed(Tb.No) with Chlorella pyrenoidosa protein hydrolysate (CPPH)-Ca, we found that the whereas bone volume compared to the(Tb.Sp) tissue was volume (BV/TV), number was significantly increased, trabecular separation dramatically trabecular thickness (Tb.Th), trabecular number (Tb.No) was significantly increased, whereas trabecular separation (Tb.Sp) was dramatically decreased

  • Our results showed that HCPPH-Ca treatment significantly changed the relative abundances of gut microbiota induced by low-calcium diets, including L. reuteri, L. plantarum, Firmicutes, L. bulgaricus, Streptococcus thermophilus and Lactobacillus (p < 0.05)

Read more

Summary

Introduction

As one of the most abundant mineral elements in human body, calcium plays a critical role in human bone health, especially for children [1] and the elderly [2]. A low intake and bioavailability of calcium may cause calcium deficiency [3], which is characterized by low levels of calcium and alkaline phosphatase (ALP) in serum, as well as low bone mass. Calcium deficiency causes microarchitectural deterioration of bone tissue, leading to increased bone fragility and risk of fracture [4,5,6]. Considerable efforts have been devoted to developing appropriate treatments because of the medical importance of calcium deficiency. Many calcium supplements are available on the market, their efficacies are often low and side effects are common [7].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call