Abstract

The objective of this research was to investigate the effect of chitosan on the interaction of water with bread ingredients and on the rate of staling. The changes in freezable bound water and total water contents in bread crumb were assessed by differential scanning calorimetry from water melting and evaporation endothermic peak areas. It was found that freezable water content and total water content in bread crumb decrease during staling more rapidly in the presence of chitosan. The weak interaction of freezable water with protein and starch polymeric chains in bread crumb becomes stronger, but the interaction of nonfreezable bound water with protein and starch molecules in bread crumb becomes weaker in the course of staling during bread storage. Two stages of bread crumb staling were indicated. Chitosan increases the rate of bread staling during both stages. It was suggested that during bread staling chitosan increases water migration rate from crumb to crust, prevents amylose-lipid complexation, and increases dehydration rate both for starch and gluten.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call