Abstract

Unexpected rainfall before herbicide absorption by plants can wash away herbicides from plant tissue surfaces, which may reduce the herbicidal efficacy and increase the adverse effects on nontarget organisms and the environment, including water networks. The objective of this study was the evaluation of the effect of chitosan on paraquat efficacy under simulated rainfall conditions. Simulated rainfall within 3 h after paraquat application decreased its herbicidal efficacy. A mixture of paraquat (280 g a.i./ha) and chitosan (0.05% w/v) significantly increased the herbicidal efficacy against Ageratum conyzoides L. (21% increase), Borreria alata Aubl. (15%) and Paspalum conjugatum Bergius (8%) under the rainfall conditions. The chemical structure of chitosan may contribute to the penetration of paraquat into plant tissues. However, a mixture of paraquat and chitosan did not affect the herbicidal efficacy against Imperata cylindrica (L.) Beauv. The morphological characteristics of I. cylindrica may interfere with the enhancement effect of chitosan. Chitosan is a degradable, nontoxic and easily available and low-cost material made from crustacean shells. These results suggest that chitosan may increase paraquat efficacy against some noxious weed species under rainfall conditions, which may reduce the risk of paraquat contamination into the environment. Therefore, the application of herbicides with chitosan may provide the economic and environmental benefits. Chitosan may enhance the efficacy of other herbicides under unexpected rainfall conditions; however, this possibility requires further investigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call