Abstract

A series of chitosan derivatives, namely polydiethylamino-ethylmethacrylate-chitosan-graft-copolymer (chitosan-g-DEAEMA), polycarboxy-chitosan-graft copolymer (chitosan-g-COOH), polyvinyl alcohol chitosan-graft-copolymer (chitosan-g-VOH), and carboxymethyl-chitosan (CM-chitosan), were synthesized and investigated as antioxidants for natural rubber (NR) and acrylonitrile butadiene rubber (NBR) mixes and vulcanizates to increase their durability. The rheometric characteristics of the rubber mixes were determined using an oscillating disc rheometer. The physico-mechanical properties of the rubber vulcanized were measured before and after exposure to thermal oxidative aging. It was found that the CM-chitosan had an accelerating effect on the curing process of NR and NBR. Also, the investigated polymers enhanced the properties of rubbers (NR and NBR) especially after ageing up to 7 days compared with commercial antioxidants, such as phenyl s-naphthylamine (PsN) and N-isopropel-Nphenyl-p-phenylene diamine (IPPD) which are used in the rubber industry. After ageing, the retained values of tensile strength, modulus at 100 % strain, and elongation at break were improved. The optimum concentration of the investigated compounds used to give good properties was found to be 1–2 parts per 100 of rubber (phr). In addition, these prepared polymers showed a decrease in the equilibrium swelling of rubber in toluene which is the proper solvent and consequently increases the crosslink density for rubbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.