Abstract
The osmotic water permeability of plasma membrane vesicles was examined after isolation from the roots of 7-day-old etiolated pea ( Pisum sativum, cv. Orlovchanin) seedlings grown at optimal temperature and those exposed to 1-day chilling at 8°C in the end of the growth period. The homogenization medium for obtaining plasma membranes was supplemented with either SH-reagents or protein phosphatase inhibitors. The plasmalemma vesicles were purified from the microsome fraction by means of two-phase polymer system. The osmotic water permeability of membrane vesicles was evaluated from the rate of their osmotically induced shrinkage. The lowering of growth temperature was accompanied by the increase in osmotic water permeability of plasmalemma. These changes occurred without the corresponding increase in aquaporin content or permeability of membrane lipid matrix. The membranes from cooled seedlings were markedly depleted in the content of SH-groups. Furthermore, the treatment of membrane samples with a thiol-reducing agent, tributylphosphine did not raise the SH-group content in membranes from chilled plants, unlike such changes in membranes from warm-grown plants. When the homogenization medium contained dithiothreitol and phenylarsine oxide (an inhibitor of tyrosine protein phosphatases), the osmotic permeability of plasmalemma in preparations from warm-grown seedlings also increased. Based on these results, it is supposed that aquaporin-mediated water permeability of membranes is regulated through different pathways under optimal and adverse conditions for plant growth. Direct action of endogenous SH redox regulators on aquaporin activity is likely under optimal growth conditions, while protein phosphatase might mediate changes in aquaporin activity under unfavorable growth conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.