Abstract
Heat transfer at the metal/chill interface during solidification of commercially pure aluminium square bar castings with cast iron chill at one end was investigated. Experiments were carried out for different chill thicknesses and superheats. The inner surface temperature of the chill initially was found to increase at a faster rate for higher superheats. The effect of chill thickness on the inner surface temperature of the chill was observed only after the heat from the solidifying casting had sufficient time to diffuse to the interior of the chill material. Inverse analysis of the non-linear one-dimensional Fourier heat conduction equation indicated the occurrence of peak heat flux at the end of filling of the mould. The effect of superheat on heat flux was minimal after filling. However, the effect of chill thickness had a significant effect on the heat flux after the occurrence of peak heat flux. Higher heat flux transients were estimated for castings poured at higher superheats. The corresponding heat transfer coefficients were also estimated and reported. The heat flux model presented in this work can be used for determination of casting/chill interfacial heat flux as a function of chill thickness and superheat. These heat flux transients could be used as boundary conditions during numerical simulation of solidification of the casting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.