Abstract
Abstract Gastrointestinal neuropathy in diabetes is one of numerous diseases resulting in abnormal functioning of the gastrointestinal tract (GIT), and it may affect any section of the GIT, including the descending colon. In the gastrointestinal system, the neurons are arranged in an interconnecting network defined as the enteric nervous system (ENS) which includes the myenteric plexus and the submucosal plexuses: inner and outer. Regular functioning of the ENS is determined by normal synthesis of the neurotransmitters and neuromodulators. This paper demonstrates the effect of hyperglycaemia on the number of enteric neurons which are immunoreactive to: neural isoform of nitric oxide synthase (nNOS), vasoactive intestinal peptide (VIP), galanin (GAL), calcitonin generelated peptide (CGRP) and cocaine amphetamine-regulated transcript (CART) in the porcine descending colon. It was demonstrated that there was a statistically significant increase in the number of neurons within the myenteric plexus immunoreactive to all investigated substances. In the outer submucosal plexus, the CART-positive neurons were the only ones not to change, whereas no changes were recorded for nNOS or CART in the inner submucosal plexus. This study is the first study to discuss quantitative changes in the neurons immunoreactive to nNOS, VIP, GAL, CGRP and CART in the descending colon in diabetic pigs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.