Abstract

Abstract The present study deals with the effects of fiber loading and alkali treatment (AT) on thermal behavior of a hair fiber (HF)-reinforced high-density polyethylene (HDPE) composite. The HF/HDPE-reinforced polymer composite has been prepared through a compression molding technique, which provided optimum thermal stability at 15 wt% of the fiber in the reinforced composite. The thermal stability of the composite has been investigated using a thermal analyzer [thermogravimetric analysis (TGA), derivative thermogravimetric analysis (DTG) and differential scanning calorimetry (DSC)]. The ATs of HF-reinforced composites have affected the thermal stability of the material, in which the observed optimum thermal stability is 0.25 N AT 15% HF/HDPE-reinforced composites. Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and tensile test played an important role in the study of the thermal stability of the material. FTIR analysis was used to investigate the chemical groups between the fiber and matrix. The morphology of the fiber is beneficial for the study of the surface treatment effect on the HF. The tensile test examined the optimum strength at 0.25 N AT 15% HF/HDPE composite, and a good relationship between the thermal and mechanical properties was also observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.