Abstract

The effects of chemical structures of graft copolymer on cement-dispersing performance were investigated to elucidate the fluidizing mechanism of polycarboxylate-based superplasticizer containing graft copolymer with polyethylene oxide graft chains. A graft copolymer with longer graft chains showed better dispersing stability with a small amount of adsorption. The adsorption study indicated that the graft chains elongated as the adsorption density increased. The thickness of the graft chain in the copolymer that adsorbs on a cement particle also depends on the average distance between two graft copolymers and the graft chain spacing within the copolymers, depending on the geometric features of the copolymer. The modified steric stabilization model incorporating the extension of graft chains due to adsorption and the geometric restriction of the copolymer gives a useful explanation of the relationship between adsorption and the flow of paste containing different graft copolymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.