Abstract

Surfaces after chemical post-processing treatments of electron beam melting (EBM) produced Ti-6Al-4V have been studied. Targeted chemical treatment allowed the study of variation in surface quality with material removal depth. Characterization of surface and defect morphologies were made, comparing two chemical post-processing methods, Hirtisation® and chemical milling with different milling depths. Surface topography was characterized using white light interferometry and subsurface defect distribution was studied using X-ray computed tomography (XCT). The morphology of the surface at different milling depths was compared to the sub-surface information from XCT scans of the as-built material. Furthermore, Hot Isostatic Pressing (HIP) treated material was documented for comparison. Results show that post-processed surfaces contain a number of different defects of mixed morphology, position and origin. Post-processing deteriorates the surface quality with increased removal depth due to the presence of sub-surface defects. The position of sub-surface defects in relation to the material surface coincides with the depth at which contour-hatch interactions are likely to have occurred during the EBM building process. The distribution of this sub-surface defect population is anisotropic in the building (horizontal) plane and reasons for this are explored. Hirtisation® produces surfaces morphologically different from chemically milled surfaces. This difference was found to contribute to Hirtisation® producing surfaces with higher roughness (Sa) than chemically milled surfaces at comparable removal depth. HIP did remove all detectable sub-surface defects but microstructural artefacts indicating healed porosity were found.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call