Abstract

The authors modified cotton cellulose with anthranilic acid to obtain a new sorbent capable of efficient extraction of heavy metal ions from aqueous solutions. We conducted the modification in two stages: at the first stage, we obtained dialdehyde cellulose by oxidation of cellulose with sodium metaperiodate; at the second stage, we treated dialdehyde cellulose with anthranilic acid to obtain a ready-made sorbent. The authors determined the optimum conditions for modifying cotton cellulose to achieve maximum sorption of iron(II) and copper(II) ions. We studied the equilibrium-kinetic characteristics of the original and modified cotton cellulose. Also, we have processed the results of the kinetic experiment within the framework of pseudo-first- and pseudo-second-order kinetics models. We selected sorption isotherms, processed them within the framework of the Langmuir model, and determined the values of the ultimate sorption capacity (A∞). The modification of cotton cellulose enables to increase its sorption capacity significantly. According to the results, the A∞ of the modified sorbent is about 4-5 times higher than the ultimate sorption capacity of native cotton cellulose to Cu(II) and Fe(II) ions. In contrast, we obtained and compared the IR spectra of anthranilic acid-modified cellulose and native cellulose. Additionally, we obtained SEM images of the modified sorbent and the native cotton cellulose surface structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.