Abstract

AbstractThis study focuses on the evolution of the fatigue strength of Laser Powder Bed Fusion (L‐PBF) produced Ti‐6Al‐4V as a function of the chemical etching finishing process. The aim is to identify the critical fatigue crack initiation mechanisms and the transitions between them in terms of the evolution of the surface micro‐geometry. This is done using three different geometries and six different surface states. The evolution of the crack initiation mechanisms is then used to explain the evolutions of the fatigue strength and the fatigue scatter. Chemical etching affects the fatigue life via a polishing effect, which directly influences both the finite and the high cycle fatigue domains. It is shown that chemical etching makes it possible to obtain fatigue strengths that are almost similar to those of the machined surface. However, it is also observed that etching cannot fully counteract the effects of large surface cavities caused by surface connected porosities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.