Abstract

Chemiresistors based on palladium phthalocyanine (PdPc) thin films were investigated as humidity sensors. The samples were thermally evaporated onto gold electrodes with a thickness about 100 nm. Optical and electrical characteristics of PdPc thin films were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrical measurements. The SEM image demonstrates PdPc (30–60 nm) nanosized particles, and XRD pattern shows that thin films are in α-phase at room temperature. Electrical measurements also confirm that PdPc exhibit semiconducting and photoconducting behaviors, and thermal activation energies of thin films were calculated. After that, the sensitivity and reversibility of devices were investigated on exposure to 20–90% RH in various chemical environments at 293 and 323 K. The response time (35–45 s) and recovery time (75–105 s) of sensors were measured at 293 K with respect to different chemical environments. At last, the stability of devices versus different RH% and chemical environments were tested. The sensors show very good stability on exposure to RH for a period of 2 months but their stability has been reduced in ethanol, acetone, and ammonia environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call