Abstract

Phase composition, particle morphology, and granulometric composition of commercial samples of MgO powders of various chemical purities (classification from technical grade to chemical grade) prepared by heat treatment at 1300°C for 3 h were studied for the subsequent synthesis of a compound based on magnesium potassium phosphate matrix MgKPO4·6H2O, promising for solidifying liquid radioactive waste. It has been established that to obtain a homogeneous mineral-like compound with compressive strength of about 15 MPa, which meets the regulatory requirements for solidified forms of liquid radioactive waste, it is necessary to use magnesium oxide powder with a particle size of not more than 50 μm, which have a high degree of crystallinity (the average crystallite size is not less than 40 nm). It was noted that the impurities of metal compounds, primarily silicon, calcium, and iron in the MgO powder, do not affect the synthesis conditions and the mechanical strength of the compound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.