Abstract

We investigated the effect of the size of graphene oxide (GO) sheets made with two different types of GO solution on the performance of Si-based solar cells. Large-sized reduced GO (rGO) with an in-plane crystalline diameter of 3.42nm has smaller defect sites and thus the Si/rGO Schottky junction solar cell shows a lower leakage current than the solar cell with small-sized rGO (i.e. an in-plane crystalline diameter of 3.03nm). Enhanced open-circuit voltage (Voc) and improved short-circuit current (Jsc) are observed for the solar cell with large-sized rGO due to the increased work function and Schottky barrier height at the Si and rGO junction. In other words, an increased built-in potential and a wider depletion region of the solar cell with large-sized rGO contribute to the increased carrier absorption and generation. These findings indicate that (i) rGO acts as a good transparent conducting layer and hole-transporting layer, and (ii) the control of rGO size in Si/rGO Schottky junction solar cell is important to improve the performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.