Abstract

Two waste biomass materials, pine needle (PN) and corn stalk (CS), were pyrolyzed at different temperatures (200–900 °C). The organic functional groups and carbonaceous structure of the biomass chars were characterized by Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy, respectively. The combustion characteristics and kinetics of biomass chars were investigated by thermogravimetric analysis (TGA). The content of carbon-, hydrogen-, and oxygen-containing functional groups in the biomass samples decreases with an increase in preparation temperature, leading to more aromatic macromolecular structure at elevated pyrolysis temperatures. With increasing pyrolysis temperature, the comprehensive combustibility index (S) of both chars related to combustion reactivity generally decreases especially for CS char because of the loss of active groups. However, the Raman spectra show that the degree of order decreases with increasing pyrolysis temperature from 400 to 700 °C because of the generation of isolated sp2 carbon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.