Energy & Fuels | VOL. 34
Read

Effect of Char Loading on Reduction Kinetics of Cu-Based Oxygen Carriers in a Drop-Tube Fluidized-Bed Reactor at Temperatures from 850 to 1100 °C: Experiment and CFD Modeling

Publication Date Dec 17, 2019

Abstract

Chemical-looping combustion with oxygen uncoupling (CLOU) is a process using gaseous or solid hydrocarbon fuels and is a promising carbon capture and storage (CCS) technology. In CLOU, combustion o...

Concepts
Powered ByUnsilo

Chemical-looping Combustion With Oxygen Uncoupling
Carbon Capture And Storage
Oxygen Uncoupling
Gaseous Hydrocarbon Fuels
CFD Modeling
Kinetics Of Carriers
Carbon Capture Technology
Experiment Modeling
Solid Fuels
Gaseous Hydrocarbon

Introducing Weekly Round-ups!Beta

Powered by R DiscoveryR Discovery

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Aug 08, 2022 to Aug 14, 2022

R DiscoveryAug 15, 2022
R DiscoveryArticles Included:  5

Introduction: There is no consensus on the policies that should be seen as implicitly pricing carbon (see World Bank (2019a) for a discussion). The OE...

Read More

Gender Equality Research Articles published between Aug 08, 2022 to Aug 14, 2022

R DiscoveryAug 15, 2022
R DiscoveryArticles Included:  4

I would like to thank Anna Khakee, Federica Zardo and Ragnar Weilandt for their very useful comments as well as the participants of the workshop of 21...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19

ONE PROBLEM . ONE PURPOSE . ONE PLACE

Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.