Abstract

AbstractMost studies on the transformation of enhanced biological phosphorus removal have used acetic acid as the carbon source and focused on the anaerobic phase. In this paper the anaerobic and aerobic transformations of phosphorus removal microorganisms at various pH values were investigated with wastewater containing 3.14 mM C propionic acid and 1.56 mM C acetic acid. It was observed that the influence of acidic pH on the concentrations of mixed‐liquor suspended solids and biomass was stronger than that of basic pH, and the maximal cell growth appeared at pH 7.6. The observed uptake rate of propionic acid was much faster than that of acetic acid at all pH values investigated, and both were affected by pH. The anaerobic transformations of polyhydroxyalkanoates and glycogen linearly decreased with increasing pH from 6.6 to 8.6, and a greater glycogen transformation correlated to greater polyhydroxyalkanoate transformation in both anaerobic and aerobic stages. Further studies revealed that at pH 6.6 and 8.6 the overall phosphorus release and uptake was low and there was no net phosphorus removal, although the initial phosphorus release was high. However, when the pH was controlled at pH 7.1 and 7.6, a phosphorus removal efficiency of 97.03% and 96.43% was achieved, respectively, which was greater than that of 87.46% at uncontrolled pH. Copyright © 2006 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.