Abstract

This research studied the influence of frequency variation on heating patterns within prepackaged foods in a 915MHz single-mode microwave assisted sterilization (MATS) system consisting of four microwave heating cavities. The frequencies of the four generators powering the MATS system at Washington State University were measured at different power levels over one year. The effect of frequency shifts in the generators on heating patterns within a model food (whey protein gel, WPG) was studied through computer simulation. The simulated heating patterns were experimentally validated using a chemical marker. Our measurement results showed that a 0.5kW increase in the microwave power caused the operating frequencies of the generators to increase by 0.25–0.75MHz. The simulation results suggested that the heating pattern of WPG processed by the MATS system was not affected by the varying frequencies of generators within the operating frequency bandwidth (900–920MHz). In addition, the simulation results revealed that using deionized water as the circulation medium in the MATS system resulted in a 23–37% increase in the temperature of WPG as compared with that when using normal tap water, but did not alter the heating pattern.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.